

Power Maths Calculation Policy, UPPER KS2

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.

Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.

Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10, 100 and 1,000.

Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.

Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.

Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.

Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: 50%, 25%, 10% and 1%.

	Year 5				
	Concrete	Pictorial	Abstract		
Year 5 Addition					
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show 15,735 + 4,012.	Represent additions, using place value equipment on a place value grid alongside written methods. TTh Th H T O 2 0 1 5 3 + 1 9 1 7 5 3 9 3 2 8	Use column addition, including exchanges. Th Th		
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. TTh Th		

Link measure with addition of decimals.

Two lengths of fencing are 0.6 m and 0·2 m.

How long are they when added together?

Use a bar model with a number line to add tenths.

$$0.6 + 0.2 = 0.8$$

6 tenths + 2 tenths = 8 tenths

Understand the link with adding fractions.

$$\frac{6}{10} + \frac{2}{10} = \frac{8}{10}$$

6 tenths + 2 tenths = 8 tenths 0.6 + 0.2 = 0.8

Adding decimals using column addition

Use place value equipment to represent additions.

Show 0.23 + 0.45 using place value counters.

Use place value equipment on a place value grid to represent additions.

Represent exchange where necessary.

Include examples where the numbers of decimal places are different.

0 · 2 3 + 0 · 4 5 O · Tth Hth 0 · 9 2

O · Tth Hth

Include exchange where required, alongside an understanding of place value.

Add using a column method, ensuring that

children understand the link with place value.

O · Tth Hth

Include additions where the numbers of decimal places are different.

$$3.4 + 0.65 = ?$$

Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. 2,250 – 1,070	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required. 15,735 - 2,582 = 13,153 TTh Th H T O TTH Th H T O T S S Subtract the IOs. Exchange I hundred for IO tens. TTh Th H T O TTH Th H T O T S S S Subtract the IOs. I,000s and IO,000s. TTh Th H T O T S S S S S S S S S S S S S S S S S	Use column subtraction methods with exchange where required. $ \frac{\text{TTh Th } \text{ H } \text{ T } \text{ O}}{{}^{5}\cancel{8}} {}^{1}\cancel{2} {}^{1}\text{ O } \text{ q } \text{ 7}} \\ -\frac{1}{4} \frac{8}{3} \frac{5}{3} \frac{4}{3} \\ 62,097 - 18,534 = 43,563 $
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'. Athletics Stadium 75,450 Hockey Centre 42,300 Velodrome 15,735	Children can explain the mistake made when the columns have not been ordered correctly. Bella's working

Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on. $2,002 - 1,995 = ?$ Use addition to check subtractions. I calculated $7,546 - 2,355 = 5,191$. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Use a place value grid to represent the stages of column subtraction, including exchanges where required. 5.74 - 2.25 = ? O Tth Hth 5 · 7 4 - 2 · 2 5 Exchange I tenth for I0 hundredths. O Tth Hth 5 · 67 14 - 2 · 2 5 Now subtract the 5 hundredths. O Tth Hth 5 · 67 14 - 2 · 2 5 Now subtract the 2 tenths, then the 2 ones. O Tth Hth 5 · 67 14 - 2 · 2 5	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. 3.921 – 3.75 = ? O Tth Hth Thth 3 · q 2 I - 3 · 7 5 0 .

Year 5 Multiplication			
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'.	Use images to explore examples and non- examples of square numbers.	Understand the pattern of square numbers in the multiplication tables.
	25 is a square number because it is made from 5 rows of 5.	3888	Use a multiplication grid to circle each square number. Can children spot a pattern?
	Use cubes to explore cube numbers.	8 × 8 = 64	
		$8^2 = 64$	
	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10.	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000.
1,000	4 × I = 4 ones = 4		н т о
	4 × 10 = 4 tens = 40		
	4 × 100 = 4 hundreds = 400		1 7
			17 × 10 = 170
			$17 \times 100 = 17 \times 10 \times 10 = 1,700$ $17 \times 1,000 = 17 \times 10 \times 10 \times 10 = 17,000$

Multiplying by multiples of 10, 100 and 1,000

Use place value equipment to explore multiplying by unitising.

5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens.

So, I know that 5 groups of 3 thousands would be 15 thousands.

Use place value equipment to represent how to multiply by multiples of 10, 100 and 1,000.

 $4 \times 3 = 12$ $4 \times 300 = 1,200$

 $6 \times 4 = 24$ $6 \times 400 = 2,400$ Use known facts and unitising to multiply.

$$5 \times 4 = 20$$

 $5 \times 40 = 200$
 $5 \times 400 = 2,000$
 $5 \times 4,000 - 20,000$

5,000 × 4 = 20,000

Multiplying up to 4-digit numbers by a single digit

Explore how to use partitioning to multiply efficiently.

 $8 \times 17 = ?$

 $8 \times 10 = 80$

80 + 56 = 136

So, $8 \times 17 = 136$

Represent multiplications using place value equipment and add the 1s, then 10s, then 100s, then 1,000s.

Н	Т	0
000	000000	
000	000000	000
100	000000	
000	000000	000
00	000000	000

Use an area model and then add the parts.

Use a column multiplication, including any required exchanges.

 $8 \times 7 = 56$

Multiplying 2- digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. $23 \times 15 = ?$ $10 \times 15 = 150$ $10 \times 15 = 150$ $3 \times 15 = 45$ There are 345 bottles of milk in total. $10 \times 15 = 345$ $10 \times 15 = 345$	Use an area model and add the parts. $28 \times 15 = ?$ 10 m $20 \times 10 = 200 \text{ m}^2$ 5 m $20 \times 5 = 100 \text{ m}^2$ $8 \times 10 = 80 \text{ m}^2$ $8 \times 5 = 40 \text{ m}^2$ 4×20 $28 \times 15 = 420$	Use column multiplication, ensuring understanding of place value at each stage. 3 4 × 2 7 2 3 8 34 × 7
Multiplying up to 4-digits by 2- digits		Use the area model then add the parts. 100	Use column multiplication, ensuring understanding of place value at each stage. 1

			1,274 × 32 = ? First multiply 1,274 by 2. $ \begin{array}{r} $
Multiplying decimals by 10, 100 and 1,000	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.	Represent multiplication by 10 as exchange on a place value grid. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Understand how this exchange is represented on a place value chart. The Heat Tool Tth 2 5 5 5 5 100 = 25 2.5 \times 100 = 250 2.5 \times 1,000 = 2,500 2 5 0 0 •

Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. 24 ÷ 3 = 8 24 ÷ 8 = 3 8 and 3 are factors of 24 because they divide 24 exactly. 24 ÷ 5 = 4 remainder 4. 5 is not a factor of 24 because there is a	Understand that prime numbers are numbers with exactly two factors. $13 \div 1 = 13$ $13 \div 2 = 6 r 1$ $13 \div 4 = 4 r 1$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	remainder. Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $00000000000000000000000000000000000$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3 = $ $12 \div = 3$ $\boxed{ \times 3 = 12 }$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $22 \div ? = 2$ $22 \div 2 = ?$ $? \div 2 = 22$

			? ÷ 22 = 2
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division.	Use a bar model to support dividing by unitising.	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.
	4,000 ÷ 1,000 4,000 × 4,000 is 4 thousands. 4 × 1,000 = 4,000 So, 4,000 ÷ 1,000 = 4	380 ÷ 10 = 38 7	Th H T O O O O O O O O O O O O O O O O O O
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. 15 \div 3 = 5 15 tens put into groups of 3 tens. There are 5 groups. 150 \div 30 = 5	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. 180 ÷ 30 = 6	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $3,000 \div 5 = 600$ $3,000 \div 50 = 60$ $3,000 \div 500 = 6$ $5 \times 600 = 3,000$ $50 \times 60 = 3,000$ $50 \times 6 = 3,000$

		1	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2 = ?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2 = 134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Too Too Too Too Too Too Too	Use short division for up to 4-digit numbers divided by a single digit. $ \begin{array}{c cccc} 0 & 5 & 6 \\ 7 & 3 & 8 & 9 & 42 \end{array} $ $ 3,892 \div 7 = 556 $ Use multiplication to check. $ 556 \times 7 = ? $ $ 6 \times 7 = 42 $ $ 50 \times 7 = 350 $ $ 500 \times 7 = 3500 $ $ 3,500 + 350 + 42 = 3,892 $

Dividing decimals by 10, 100 and 1,000	Understand division by 10 using exchange.	Represent division using exchange on a place value grid.	Understand the movement of digits on a place value grid.
	2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths.	1.5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths. 1.5 ÷ 10 = 0.15	$0 \cdot 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1$
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third.	Use a bar model and other fraction representations to show the link between fractions and division. $I \div 3 = \frac{1}{3}$	Use the link between division and fractions to calculate divisions. $5 \div 4 = \frac{5}{4} = 1\frac{1}{4}$ $11 \div 4 = \frac{11}{4} = 2\frac{3}{4}$

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. 2,411,301 + 500,000 = ? This would be 5 more counters in the HTh place. So, the total is 2,911,301. 2,411,301 + 500,000 = 2,911,301	Use a bar model to support thinking in addition problems. 257,000 + 99,000 = ? £257,000 £100,000 I added 100 thousands then subtracted 1 thousand. 257 thousands + 100 thousands = 357 thousands 257,000 + 100,000 = 357,000 357,000 - 1,000 = 356,000 So, 257,000 + 99,000 = 356,000	Use place value and unitising to support mental calculations with larger numbers. 195,000 + 6,000 = ? 195 + 5 + 1 = 201 195 thousands + 6 thousands = 201 thousands So, 195,000 + 6,000 = 201,000
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5 - 2 = ?$	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $4+6\times16$ $4+96=100$ $(4+6)\times16$ $10\times16=160$

Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000 - 150,000$ That is 950 thousands - 150 thousands $950,000 - 150,000 = 800,000$ So, the difference is 800 thousands. $950,000 - 150,000 = 800,000$	Subtract efficiently from powers of 10. 10,000 – 500 = ?
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. Th T O O O O O O O O O O O O O O O O O O	Use place value equipment to compare methods. Method I 3 2 2 5 3 2 2 5 3 2 2 5 1 2 9 0 0 1 1 2 Method 2	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 3,000 200 20 5 4 12,000 800 80 20 12,000 + 800 + 80 + 20 = 12,900 Method 4 3 2 2 5 × 4 1 2 9 0 0 1 2 9 0 0
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication.	Use compact column multiplication with understanding of place value at all stages.

		Method I	I 2 3 5
		1,000 200 30 5 20 20,000 4,000 600 100	× 2 1 1 2 3 5 1 × 1,235 2 4 7 0 0 20 × 1,235
		1 1,000 200 30 5	2 5 9 3 5 21 × 1,235
Using knowledge	Use equipment to understand square numbers	Compare methods visually using an area model.	Use a known fact to generate families of related
of factors and	and cube numbers.	Understand that multiple approaches will	facts.
partitions to compare		produce the same answer if completed accurately.	
methods for		accuratery.	
multiplications		5,200 20 5,200 × 20 5 5,200 × 5 5,200 × 25 5,200 × 25	1,870 ÷ II = I70
	$5 \times 5 = 5^2 = 25$ $5 \times 5 \times 5 = 5^3 = 25 \times 5 = 125$	5,000 200 20 5,000 × 20 200 × 20 5 5,000 × 5 200 × 5	170 × 12 17 × 110
		5,200 5 5,200 × 5 5 5,200 × 5 5 5,200 × 5	Use factors to calculate efficiently. 15×16
		5 5,200 x 5 5,200 x 5	15 × 16 = 3 × 5 × 2 × 8
			= 3 × 8 × 2 × 5
		Represent and compare methods using a bar model.	= 24 × 10
		i model.	= 240

Multiplying by 10, 100 and 1,000

Use place value equipment to explore exchange in decimal multiplication.

Represent 0-3.

Multiply by IO.

Exchange each group

of ten tenths.

 $0.3 \times 10 = ?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones. Understand how the exchange affects decimal numbers on a place value grid.

$$0.3 \times 10 = 3$$

Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000.

$$8 \times 100 = 800$$

 $8 \times 300 = 800 \times 3$
 $= 2,400$

$$2.5 \times 10 = 25$$
$$2.5 \times 20 = 2.5 \times 10 \times 2$$
$$= 50$$

Multiplying decimals

Explore decimal multiplications using place value equipment and in the context of measures.

3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths.

 4×1 cm = 4 cm 4×0.3 cm = 1.2 cm Represent calculations on a place value grid.

$$3 \times 3 = 9$$

$$3 \times 0.3 = 0.9$$

Understand the link between multiplying decimals and repeated addition.

Use known facts to multiply decimals.

$$4 \times 3 = 12$$

$$4 \times 0.3 = 1.2$$

$$4\times 0{\cdot}03=0{\cdot}12$$

$$20\times5=100$$

$$20\times0.5=10$$

$$20\times0{\cdot}05=1$$

Find families of facts from a known multiplication.

I know that $18 \times 4 = 72$.

This can help me work out:

$$1.8 \times 4 = ?$$

	$4 \times 1.3 = 4 + 1.2 = 5.2 \text{ cm}$		$18 \times 0.4 = ?$ $180 \times 0.4 = ?$ $18 \times 0.04 = ?$ Use a place value grid to understand the effects of multiplying decimals.		
			2 × 3 6 • Tth Hth		
			0·2 × 3		
			0·02 × 3		
Year 6 Division					
factors number. exactly two factors. Under		Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recognise and know primes up to 100. Understand that 2 is the only even prime, and that 1 is not a prime number.		
	24 ÷ 4 = 6 30 ÷ 4 = 7 remainder 2	0000000 0000 0000 000 000000 0000 0000	I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		
	4 is a factor of 24 but is not a factor of 30.	17 ÷ 2 = 8 r l	20 22 22 24 25 26 27 20 20 40		

Dividing by a single digit	Use equipment to make groups from a total. There are 78 in total. There are 6 groups of 13. There are 13 groups of 6.	H T O Groups of 6 are in 100? H T O How many groups of 6 are in 13 tens? H T O How many groups of 6 are in 13 tens? H T O How many groups of 6 are in 12 ones? How many groups of 6 are in 12 ones?	Use short division to divide by a single digit. 0
Dividing by a 2- digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. 1,260 ÷ 14 = ? 1,260 ÷ 2 = 630 630 ÷ 7 = 90 1,260 ÷ 14 = 90	Use factors and repeated division where appropriate. 2,100 ÷ 12 = ? $2,100 \rightarrow $

Dividing by a 2digit number using long division

Use equipment to build numbers from groups.

182 divided into groups of 13. There are 14 groups.

Use an area model alongside written division to model the process.

130

247

Use long division where factors are not useful (for example, when dividing by a 2-digit prime number).

Write the required multiples to support the division process.

A slightly different layout may be used, with the division completed above rather than at the side.

			3 21 7 9 8 - 6 3 0 1 6 8 21 7 9 8 - 6 3 0 1 6 8 - 6 3 0 1 6 8 - 1 6 8 0 Divisions with a remainder explored in problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. O The Hth Thth Exchange each 0-1 for ten 0-01s. Divide 20 counters by 10. O-2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10, 100 and 1,000 on the digits on a place value grid. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50 = \bigcirc$ $40 \longrightarrow \div 10 \longrightarrow \div 5 \longrightarrow ?$ $40 \longrightarrow \div 5 \longrightarrow \div 10 \longrightarrow ?$ $40 \div 5 = 8$ $8 \div 10 = 0.8$ $50, 40 \div 50 = 0.8$
Dividing decimals	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions.	Use short division to divide decimals with up to 2 decimal places.

8 tenths divided into 4 groups. 2 tenths in each group.

0.8			
?	?	?	?

 $4 \times 2 = 8$

 $8 \div 4 = 2$

So, $4 \times 0.2 = 0.8$ $0.8 \div 4 = 0.2$

8 4 · 2 4