Power Maths Calculation Policy, UPPER KS2

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their

 column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their

understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000.
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: 50\%, 25\%, 10\% and 1\%.

Year 5								
	Concrete			Pictorial				Abstract
Year 5 Addition								
Column addition with whole numbers	Use p addition Add a to show	value equipment to r w of counters onto the $15,735+4,012$.	resent ace value grid	Represent additions equipment on a pl written methods. I need to exchang $$	place \odot H \odot ge 10	ng place v lue grid al $\odot \odot \odot \odot \odot$ $\odot \odot$ ns for a 10	value longside 00.	Use column addition, including exchanges.
Representing additions				Bar models repre numbers in the co	sent ontex ? 28,370 fl.45	dition of t f problem	two or more m solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? 0.6 m 0.2 m \square	Use a bar model with a number line to add tenths. $\begin{aligned} & 0.6+0 \cdot 2=0.8 \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \end{aligned}$	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 23 \\ +0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline 0 \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 92 \\ +0 \cdot 33 \\ \hline 1 \cdot 25 \\ \hline 1 \end{array}$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \\ +0 \cdot 6 \\ \hline \end{array}$

Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O TTh Th H T O 1 5 7 3 5 - 2 5 8 2 3 Now subtract the IOs. Exchange I hundred for 10 tens. Subtract the $100 \mathrm{~s}, 1,000$ s and 10,000 s. $$	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated 18,000 + 4,000 mentally to check my subtraction.

Year 5 Multiplication			
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10 , 100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10.	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000 . $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place multiply $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 300= \end{aligned}$	lue equipme multiples of 10 00	nt to represent how to 10,100 and 1,000 . $\begin{aligned} & 6 \times 4=24 \\ & 6 \times 400=2,400 \end{aligned}$	Use known facts $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,0 \\ & 5,000 \times 4=20,0 \end{aligned}$	nd unitising	multiply.
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$	Represent multiplications using place value equipment and add the 1 s , then 10 s , then 100 s , then $1,000 \mathrm{~s}$.			Use an area model and then add the parts.		
		H	T	0	$5 \quad 100 \times 5=500$	$60 \times 5=300$	$3 \times 5=15$
			$\text { (10)(10)(10)(10) } 10$ (10)	(1) (1)	Use a column multiplication, including any required exchanges.		
		®	$\begin{aligned} & \text { (10)(10)(10)(10) } 10 \\ & 10 \end{aligned}$	(1)			
		©	(10)(10)(1)(10) (10)	(1)(1)	$\begin{array}{r} 136 \\ \times \quad 6 \\ \hline \end{array}$		
		®	$\text { (10)(10)(10)(10) } 10$	(1)	$\begin{array}{l\|l} \hline 8 & 1 \\ \hline 2 & 3 \end{array}$		
	$\begin{array}{rlr} 8 & \times 10=80 & 8 \times 7=56 \\ 80+56 & =136 & \end{array}$	©	(10)(10)(10)(10) (10)	\square			
	So, $8 \times 17=136$						

Multiplying 2- digit numbers by 2-digit numbers	Partition one number into 10 s and 1 s , then add the parts. $23 \times 15=?$ $23 \times 15=345$	Use $28 \times$ 10 m $28 x$	area model an = ? 20 m $20 \times 10=200 \mathrm{~m}^{2}$ $20 \times 5=100 \mathrm{~m}^{2}$ $=420$	the parts. $\begin{gathered} 8 \mathrm{~m} \\ 8 \times 10=80 \mathrm{~m}^{2} \\ 8 \times 5=40 \mathrm{~m}^{2} \end{gathered}$	$\begin{array}{rrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 2 & 0 & 0 \\ 1 & 0 & 0 \\ & 8 & 0 \\ + & 4 & 0 \\ \hline 4 & 2 & 0 \\ \hline \end{array}$	Use column multiplication, ensuring understanding of place value at each stage.
Multiplying up to 4-digits by 2digits		Use 10 \square 2 \square 143 The 143	area model t 0 40 1,716 1,716 boxes of cereal $2=1,716$	dd the parts. \square	 Th H T 0 1 0 0 0 4 0 0 2 0 0 8 0 3 0 6 1 7 1 6 1 	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Year 5 Division			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. $24 \div 3=8$ $24 \div 8=3$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13 . 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $\begin{aligned} & 12 \div 3=\square \\ & 12 \div \square=3 \\ & \square \times 3=12 \\ & \square \div 3=12 \end{aligned}$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \end{aligned}$

		12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & 0 \\ & 7 \\ & 7 \begin{array}{\|rrr} 3 & 5 & 5 \\ 3 & { }^{4} 2 \end{array} \\ & 3,892 \div 7=556 \end{aligned}$ Use multiplication to check. $\begin{aligned} & 556 \times 7=? \\ & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

		This can be written as: $16 \times 4+16 \times 6$ $\frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160$	
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.

Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square 950 So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods.	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 $12.000+800+80+20=12,900$ $$
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication.	Use compact column multiplication with understanding of place value at all stages.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Dividing by a 2digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an model $377 \div$ 13 \square13 13013 130$\square$$\begin{gathered} \hline 10 \\ 13 \begin{array}{\|c\|} \hline 130 \\ \hline \end{array} \\ \hline \end{gathered}$	rea model alongside written division to e process. = ? \square 377 $=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ $\begin{array}{r\|rrr} \hline 13 & 3 & 7 & 7 \\ - & 1 & 3 & 0 \\ \hline & 10 \\ \hline & 2 & 4 & 7 \\ - & 1 & 3 & 0 \\ \hline & 10 \\ -\quad 1 & 1 & 7 & \\ \hline & 1 & 7 & 9 \\ \hline & & 0 & 29 \\ 377 \div 13=29 & \end{array}$ A slightly different layout may be used, with the division completed above rather than at the side.

			$\begin{array}{r} \\ \\ 21 \\ \hline 7 \\ 7 \\ -\quad 6 \\ \hline \end{array}$ 21 3 7 9 $-\begin{array}{r}630 \\ \hline 168\end{array}$ -168 Divisions with a remainder explored in problem-solving contexts.
Dividing by 10 , 100 and 1,000	Use place value equipment to explore division as exchange. $0 \cdot 2$ is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10, 100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10, 100 and 1,000. $12 \div 20=?$ \square \square	Use knowledge of factors to divide by multiples of 10,100 and 1,000 . $40 \div 50=$ \square $40 \rightarrow \div \div 5 \rightarrow+10 \rightarrow ?$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions.	Use short division to divide decimals with up to 2 decimal places.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

